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Deoxysugars are constituents of many biologically active natural Scheme 1

products in which they are commonly the determinants of activity
for the parent moleculésTo characterize deoxysugar biosynthetic
pathways and to collect genes useful for in vivo glycodiversification
of secondary metabolitéswe investigated the biosynthesis of

OMe

2t

0 SpnO

OTDP H ,0

Me
e
9 2 ome

/ SpnN
Me o NADPH

p-forosamine {, 4-N,N-(dimethylamino)-2,3,4,6-tetradeoxy-d- NN SR o
threo-hexopyranose). This unusual sugar is found in several natural ¢ OMP PLPILG *y Owr
prqducts, including ;plramyciha cllnlpally usef.ull antibiotic, and san//PLP spn@\ PyP
spinosyn ),* an environmentally benign insecticide. The structure = ~ —
of forosamine is unique due to its highly deoxygenated nature, and M“_ P H\ﬁ §\Me ;0>

its biosynthesis must include a series 6f@ bond cleavage events. H‘Néé—() HO TDP H—Nzié-(); S OmP
Early studies of spinosyn production®accharopolyspora spinosa ) opo” 5,)

led to the isolation of the entire biosynthetic gene cluster, in which }\, H,0 I mo

spnN spnQ spnP, spnQ spnR and spn$S were proposed to be
involved in forosamine formationThe tentative identification of
these genes by sequence analysis allowed the assignment of
potential roles for the gene products, from which two possible routes
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starting from3 can be envisioned for the biosynthesisl¢gScheme Me B H, M o M B H, M o
1). The key steps in route A involve deoxygenation at G-2+(4) - N%{%J _%omp s N#\mp
and then at C-34 — 6), followed by transamination at C-4 (— oro :OP; 5¢
7) and dimethylation of the 4-amino group to give TDP-forosamine — '}\, p — = l}\‘ PMP
(8), which is then incorporated intd. The reaction sequence of o Me
route B closely resembles that of route A except for the order of H:N/Aw' SenR m
the C-3 deoxygenation and C-4 transamination stéps @ — 7), 7 Ome PLPIL-Glu 6 omp
both of which are expected to be catalyzed bydB8pendent spnsl
enzymes. Me

The C-3 deoxygenation step is of particular interest since this MeN 2
transformation in the formation of other glucose-derived 3,6- g OmP

dideoxysugars (such as ascarylose) requires a pair of enzymes, a
Bs-dependent [2Fe2S]-containing dehydrase {E and an iror-
sulfur flavoprotein reductase ¢k acting in concer.” The typical
reaction, illustrated in route A, proceeds via a dehydration/electron-
transfer reduction mechanisriig — 5b — 5c¢). Sequence identity
(49%) between SpnQ, the gene productsphQ and g of the
ascarylose pathw8ymplicates SpnQ as the likely;Equivalent

As shown in Scheme 1, the substrate and the cofactor require-
ments for the C-3 deoxygenation by SpnQ and C-4 transamination
by SpnR are clearly different depending on which route is used
during forosamine production. Hence, the sequence of events in
that convertsba — 5b in the forosamine biosynthesis. The this pathway can be established by identifying the function of SpnQ.
conservation of an “Etype” [2Fe-2S] binding moti? in SpnQ However, difficulties were encountered in our attempts to express
further suggests that an electron-transfer reduction is an integralthespnQgene to directly examine the catalytic properties of purified
part of the deoxygenation reaction in which the [2R&] center SpnQ. To circumvent these obstacles, we investigated the substrate
in SpnQ serves as a part of the electron-transfer conduit. However,specificity of SpnR, using a stable TMP-phosphonate analogue of
no E; equivalent gene was found in tepngene cluster. A generic 7. Our characterization of SpnR identifies it as an aminotransferase
reductase could function as ag &irrogate in the conversion dof that catalyzes the interconversion betwe®and 7. This result
to 6 (route A,5b — 5¢), following the mechanism established for indicates that route A is preferred in the forosamine biosynthetic
ascarylose and other glucose-derived 3,6-dideoxysugars. Alterna-pathway.
tively, the absence of ansEequivalent gene in thepngene cluster To determine the function of SpnR, tepnRgene was amplified
might indicate that C-3 deoxygenation is not a typicaBgreaction. by the polymerase chain reaction (PCR) using genomic DNA from
It may instead be accomplished by the catalysis of SpnQ along S. spinosgNRRL18537) as template and cloned into a pET24b-
with a nonspecific reductase on the aminosugar interme€@iste (+) vector. The resulting construct, pKZR1, was used to transform
give 7 (route B,5a — 5b — 5d). the Escherichia coliBL21(DE3) cells. The expressed SpnR,
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Scheme 2 These results provide the first direct evidence establishing the
H oH Na relevance of thespnR gene to forosamine biosynthesis. The
C4H7MgBr DPPA, DIAD o X . . N )
Me\é/go #Og— Mg \/'\/\/ verification of the catalytic function of SpnR has substantiated its
OBn 57% Oen 55% O8n assigned role as an aminotransferase in the proposed biosynthetic
12 13 14 9 prop Y
Ns 1. TPScl Ns pathway. Although a full understanding of the mechanism of the
-mi imidazole - . ) .
%’Me\/k/\i/\w 2.TsCl Me\M\orps C-3 deoxygenation awaits future characterization of the SpnQ
O 15 OH e O O protein, our data shed light on the reaction sequence of the
1,80k Mo o pac Ve forosamine pathway. In particular, the substrate for SpnQ can be
2 NaH, PhH ”=$&ﬂ Boogd E°°HN$&L implicated as compound on the basis of our results. Moreover,
66% (2 steps) 16 O &% oTPs the strategy of utilizing stable TMP-phosphonate sugars in place
1 TBAF, THF Ve TsEr Ve of TpP-sggar deriyatives to determineT the pos;ible functions. of
2. CBry, PPhy B°°H“’¢%j> MeCN HzNﬁ&Lﬁ proteins involved in unusual sugar biosynthesis may also find
3-:’;25‘3% 12°)°° 47 —FOEN2 89% 18 TOH2 general applicability for the design of probes to study related
% (3 steps; . . . .
° enzymes whose mechanisms involve the transformation of labile
4 Me H Me . .
Q N deoxysugar intermediates.
TMP-morpholidate HZN’m‘_ﬁ ﬁ o)\ﬁb' y g
THtetrazole Z;°‘Z:°W1. Acknowledgment. This work was supported in part by the
- 10w National Institutes of Health Grants GM35906 and 40541. We thank
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Scheme 3 the genetics of. spinosa.
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